[livres divers classés par sujet] [Informatique] [Algorithmique] [Programmation] [Mathématiques] [Hardware] [Robotique] [Langage] [Intelligence artificielle] [Réseaux]
[Bases de données] [Télécommunications] [Chimie] [Médecine] [Astronomie] [Astrophysique] [Films scientifiques] [Histoire] [Géographie] [Littérature]

Resolving Inconsistencies using Multi-agent Sensor Systems

contributor Institut für Parallele und Verteilte Systeme, Bildverstehen
creator Benkmann, Ruben
Käppeler, Uwe-Philipp
Zweigle, Oliver
Lafrenz, Reinhard
Levi, Paul
date 2008-04-02
description Agents acting in physical space use perception in combination with their own world models and shared context models to orient. The shared context models have to be adapted permanently to the conditions of the real world. If a measurement of an agentâs sensor does not fit to the corresponding data in the shared context model the system contains an inconsistency. In this case it is necessary to decide whether the reason for the discrepancy is a change in the real world or a measurement error. If there is a change in the real world the shared context model has to be corrected. A single agent can hardly answer this question using its local world model. This work describes the scenario of a context model that is shared with and updated by many agents that possess one or more sensors. In occurrence of an inconsistency it is possible to call other agents to validate a measurement. The functions to call the other agents are provided by the Nexus platform, a federation of systems that manages users and objects in shared dynamic context models. The study reported in this paper evaluates procedures that combine a multitude of measurements to a single result that can be integrated in the shared context model. The statistically optimized procedure based on ratings of the participating agents is enhanced using scaled weighted arithmetic means which prevents the system from running into singularities caused by the feedback from the ratings. The method is combined with an additional preprocessing based on fuzzy clustering that detects aberrant measurements which can be excluded from further processing.
identifier  http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2008-23&engl=1
ISBN: 978-972-96895-3-6
language ger
publisher University of Stuttgart : Collaborative Research Center SFB 627 (Nexus: World Models for Mobile Context-Based Systems)
Aveiro: Universidade de Aveiro
source In: Seabra Lopez, Luis (ed.); Silva, Filipe (ed.); Santos, Vitor (ed.): Proceedings of the 8th Conference on Autonomous Robot Systems and Competition: Robotica 08; Aveiro, Portugal, April 2nd, 2008, pp. 93-98
subject Robotics (CR I.2.9)
Information Storage and Retrieval (CR H.3)
Sensor
Fusion
Normalized Weighted Arithmetic Mean
title Resolving Inconsistencies using Multi-agent Sensor Systems
type Text
Article in Proceedings